

Customer: KeyFi

Date: April 6th, 2021

SMART CONTRACT CODE
REVIEW AND SECURITY
ANALYSIS REPORT

This document may contain confidential information about IT systems and the
intellectual property of the Customer as well as information about potential
vulnerabilities and methods of their exploitation.

The report containing confidential information can be used internally by the
Customer, or it can be disclosed publicly after all vulnerabilities fixed — upon a

decision of the Customer.

Document

Name Smart Contract Code Review and Security Analysis Report for KeyFi

Approved by Andrew Matiukhin | CTO Hacken OU

Type Token, Multisig Timelock, Token factory, Farming

Platform Ethereum / Solidity

Methods Architecture Review, Functional Testing, Computer-Aided Verification, Manual
Review

Repository https://github.com/KEYFIAI/keyfi-token

Commit DA604E1926E2B360C3B7E75575A7471E5F3CCC42

Deployed
contract

Timeline 05 APR 2021 – 06 APR 2021

Changelog 06 APR 2021 – INITIAL AUDIT

Table of contents

Introduction .. 4

Scope .. 4

Executive Summary ... 5

Severity Definitions ... 7

AS-IS overview .. 8

Conclusion .. 37

Disclaimers .. 38

Introduction

Hacken OÜ (Consultant) was contracted by KeyFi (Customer) to conduct a Smart
Contract Code Review and Security Analysis. This report presents the findings of
the security assessment of Customer's smart contract and its code review

conducted between April 5th, 2021 – April 6th, 2021.

Scope

The scope of the project is smart contracts in the repository:
Repository:

https://github.com/KEYFIAI/keyfi-token
Commit:
 da604e1926e2b360c3b7e75575a7471e5f3ccc42
Files:
 Airdrop.sol

Governance.sol
KeyfiToken.sol
Migrations.sol
RewardPool.sol
Timelock.sol
TreasuryVester.sol
Whitelist.sol

We have scanned this smart contract for commonly known and more specific
vulnerabilities. Here are some of the commonly known vulnerabilities that are
considered:

Category Check Item

Code review ▪ Reentrancy

▪ Ownership Takeover

▪ Timestamp Dependence

▪ Gas Limit and Loops

▪ DoS with (Unexpected) Throw

▪ DoS with Block Gas Limit

▪ Transaction-Ordering Dependence

▪ Style guide violation

▪ Costly Loop

▪ ERC20 API violation

▪ Unchecked external call

▪ Unchecked math

▪ Unsafe type inference

▪ Implicit visibility level

▪ Deployment Consistency

▪ Repository Consistency

▪ Data Consistency

Functional review ▪ Business Logics Review

▪ Functionality Checks

▪ Access Control & Authorization

▪ Escrow manipulation

▪ Token Supply manipulation

▪ Assets integrity

▪ User Balances manipulation

▪ Data Consistency manipulation

▪ Kill-Switch Mechanism

▪ Operation Trails & Event Generation

Executive Summary

According to the assessment, the Customer's smart contracts are secure.

Our team performed an analysis of code functionality, manual audit, and
automated checks with Mythril and Slither. All issues found during automated
analysis were manually reviewed, and important vulnerabilities are presented in
the Audit overview section. A general overview is presented in AS-IS section, and
all found issues can be found in the Audit overview section.

As a result of the first audit, security engineers found 2 medium and 2 low
severity issues.

Notice:

1. New tokens may be minted by owners unlimitedly.

Insecure Poor secured Secured Well-secured

You are here

Graph 1. The distribution of vulnerabilities after the first review.

Medium
50%

Low
50%

Medium Low

Severity Definitions

Risk Level Description

Critical
Critical vulnerabilities are usually straightforward to exploit and can
lead to assets loss or data manipulations.

High

High-level vulnerabilities are difficult to exploit; however, they also
have a significant impact on smart contract execution, e.g., public
access to crucial functions

Medium
Medium-level vulnerabilities are important to fix; however, they
can't lead to assets loss or data manipulations.

Low
Low-level vulnerabilities are mostly related to outdated, unused,
etc. code snippets that can't have a significant impact on
execution

Lowest / Code
Style / Best

Practice

Lowest-level vulnerabilities, code style violations, and info
statements can't affect smart contract execution and can be
ignored.

AS-IS overview

KeyfiToken.sol

Description

KeyfiToken is an ERC-20 token with voting and minting functionality. Keyfi token
has following parameters:

• Name: Keyfi Token

• Symbol: KEYFI

• Decimals: 18

Imports

KeyfiToken contract has following imports:

• import "@openzeppelin/contracts/access/Ownable.sol";

• import "@openzeppelin/contracts/token/ERC20/IERC20.sol";

• import "@openzeppelin/contracts/math/SafeMath.sol";

Inheritance

KeyfiToken contract is IERC20, Ownable.

Usages

KeyfiToken contract has no custom usages.

Structs

KeyfiToken contract has following data structures:

• struct Checkpoint

Enums

KeyfiToken contract has no custom enums.

Events

KeyfiToken contract has following events:

• event MinterChanged(address minter, address newMinter);

• event MinimumMintGapChanged(uint32 previousMinimumGap, uint32
newMinimumGap);

• event MintCapChanged(uint8 previousCap, uint8 newCap);

• event DelegateChanged(address indexed delegator, address indexed
fromDelegate, address indexed toDelegate);

• event DelegateVotesChanged(address indexed delegate, uint256
previousBalance, uint256 newBalance);

Modifiers

KeyfiToken has no custom modifiers.

Fields

KeyfiToken contract has following fields and constants:

• string public constant name = "Keyfi Token";

• string public constant symbol = "KEYFI";

• uint8 public constant decimals = 18;

• uint256 public override totalSupply = 1000000e18;

• mapping (address => mapping (address => uint256)) internal allowances;

• mapping (address => uint256) internal balances;

• mapping (address => address) public delegates;

• address public minter;

• uint256 public mintingAllowedAfter;

• uint32 public minimumMintGap = 1 days * 365;

• uint8 public mintCap = 2;

• mapping (address => mapping (uint256 => Checkpoint)) public
checkpoints; mapping (address => uint256) public numCheckpoints;

• bytes32 public constant DOMAIN_TYPEHASH =
keccak256("EIP712Domain(string name,uint256 chainId,address
verifyingContract)");

• bytes32 public constant DELEGATION_TYPEHASH =
keccak256("Delegation(address delegatee,uint256 nonce,uint256
expiry)");

• mapping (address => uint) public nonces;

Functions

KeyfiToken has following public and external functions:

• constructor
Description
Assigns totalSupply of tokens to an account. Sets minter and minting

delay.

Input parameters
o address account
o address _minter
o uint256 _mintingAllowedAfter

Constraints
None
Events emit
Emits Transfer and MinterChanged events.
Output

 None

• setMinter, setMintCap, setMinimumMintGap
Description
Setters functions restricted for admin use only.

• mint
Description
Mint tokens
Input parameters

o address _to
o uint256 _amount

Constraints
o Can only be called by the minter.
o mintingAllowedAfter has reached.
o _to address should not be 0
o _amount should not exceed (totalSupply.mul(mintCap)).div(100)

Events emit
Emits Transfer event.
Output

 None

• allowance
Description
Get the number of tokens spender is approved to spend on behalf of

account
Input parameters

o address account
o address spender

Constraints
None
Events emit
None
Output

o uint256 — The number of tokens approved.

• approve
Description
Approve spender to transfer up to amount from src
Input parameters

o address spender
o uint256 amount

Constraints
None
Events emit
None
Output

o bool — Whether or not the approval succeeded.

• approve
Description
Approve spender to transfer up to amount from src.
Input parameters

o address spender
o uint256 amount

Constraints
None
Events emit
Emits Approval event.
Output

o bool — Whether or not the approval succeeded.

• balanceOf
Description
Get the number of tokens held by the account.
Input parameters

o address account
Constraints
None
Events emit
None
Output

o uint256 — The number of tokens held.

• transfer
Description
Transfer amount tokens from msg.sender to dst.
Input parameters

o address dst
o uint256 amount

Constraints
o A sender should have enough tokens.

Events emit
Emits Transfer event.
Output

o bool — Whether or not the transfer succeeded.

• transferFrom
Description
Transfer amount tokens from src to dst.
Input parameters

o address src
o address dst
o uint256 amount

Constraints
o A message sender should have allowance to transfer tokens from

src.
Events emit
Emits Approval and Transfer event.
Output

o bool — Whether or not the transfer succeeded.

• delegate
Description
Delegate votes from msg.sender to delegatee
Input parameters

o address delegatee
Constraints
None
Events emit
Emits DelegateChanged event.
Output

 None

• delegateBySig
Description
Delegates votes from signatory to delegatee.
Input parameters

o address delegate
o uint256 nonce
o uint256 expiry

o uint8 v
o bytes32 r
o bytes32 s

Constraints
None
Events emit
Emits DelegateChanged event.
Output

 None

• getCurrentVotes
Description

Get current votes balance for account.

Input parameters
o address account

Constraints
None
Events emit
Emits DelegateChanged event.
Output

o uint256 — number of current votes for account.

• getCurrentVotes
Description

Get current votes balance for account.

Input parameters
o address account

Constraints
None
Events emit
None
Output

o uint256 — number of current votes for account.

• getPriorVotes
Description
Determine the prior number of votes for an account as of a block

number.

Input parameters
o address account
o uint256 blockNumber

Constraints

None
Events emit
None
Output

o uint256 — number of votes the account had as of the given block.

Whitelist.sol

Description

Whitelist is a contract that provides whitelist functionality.

Imports

Whitelist contract has following imports:

• import "@openzeppelin/contracts/access/AccessControl.sol";

Inheritance

Whitelist contract is AccessControl.

Usages

Whitelist contract has no custom usages.

Structs

Whitelist contract has no custom data structures.

Enums

Whitelist contract has no custom enums.

Events

Whitelist contract has no custom events.

Modifiers

Whitelist has following modifiers:

• onlyWhitelistAdmin – checks whether a caller is whitelist admin.

• onlyWhitelisted – checks whether a caller is whitelisted.

Fields

Whitelist contract has following fields and constants:

• bytes32 public constant WHITELIST_ADMIN =
keccak256("WHITELIST_ADMIN");

• bytes32 public constant WHITELISTED = keccak256("WHITELISTED");

Functions

Whitelist has following public functions:

• constructor
Description
Inits the contract. Sets whitelist admin role to a message sender.
Input parameters
None
Constraints
None
Events emit
None
Output

 None

• addWhitelistAdmin
Description
Adds new whitelist admin
Input parameters

o address account
Constraints

o Can only be called by the whitelist admin.
Events emit
None
Output

 None

• removeWhitelistAdmin
Description
Remove a whitelist admin
Input parameters

o address account
Constraints

o Can only be called by the whitelist admin.
Events emit

None
Output

 None

• addWhitelisted
Description
Add an address to the whitelist.
Input parameters

o address account
Constraints

o Can only be called by the whitelist admin.
Events emit
None
Output

 None

• removeWhitelisted
Description
Remove an address from the whitelist.
Input parameters

o address account
Constraints

o Can only be called by the whitelist admin.
Events emit
None
Output

 None

• removeWhitelisted
Description
Check whether an address is whitelisted.
Input parameters

o address account
Constraints
None
Events emit
None
Output

 None

• isWhitelistAdmin
Description
Check whether an address is the whitelist admin.
Input parameters

o address account
Constraints
None
Events emit
None
Output

 None

RewardPool.sol

Description

RewardPool is a staking contract with rewards in reward tokens.

Imports

RewardPool contract has following imports:

• import "@openzeppelin/contracts/token/ERC20/IERC20.sol";

• import "@openzeppelin/contracts/token/ERC20/SafeERC20.sol";

• import "@openzeppelin/contracts/math/SafeMath.sol";

• import "@openzeppelin/contracts/access/Ownable.sol";

• import "./KeyfiToken.sol";

Inheritance

RewardPool is Ownable

Usages

RewardPool contract following usages:

• SafeMath for uint256;

• SafeERC20 for IERC20;

• SafeERC20 for KeyfiToken;

Structs

RewardPool contract has following data structures:

• UserInfo

• StakingToken

• TokenIndex

Enums

RewardPool contract has no custom enums.

Events

RewardPool contract has following events:

• event TokenAdded(address indexed token, uint256 allocPoints);

• event TokenRemoved(address indexed token);

• event Deposit(address indexed user, uint256 indexed pid, uint256
amount);

• event Withdraw(address indexed user, uint256 indexed pid, uint256
amount);

• event WithdrawRewards(address indexed user, uint256 amount);

• event EmergencyWithdraw(address indexed user, uint256 indexed pid,
uint256 amount);

• event RewardPerBlockChanged(uint256 previousRate, uint256 newRate);

• event SetAllocPoint(address token, uint256 allocPoints);

• event InsufficientRewardpool();

• event SetFeeAddressA(address indexed user, address indexed
newAddress);

• event SetFeeAddressB(address indexed user, address indexed
newAddress);

Modifiers

RewardPool has no custom modifiers.

Fields

RewardPool contract has following fields and constants:

• KeyfiToken public immutable rewardToken;

• uint256 public immutable bonusEndBlock;

• uint256 public immutable bonusMultiplier;

• uint256 public rewardPerBlock;

• uint256 public totalKeyfiStake;

• address public feeAddA =
0xBff76b1Ab7A545EdB58feB4068A5737AAf3a102c;

• address public feeAddB =
0x5BEBAFE58FC8b87a03Bd39bC147a7fb53e4FABd5;

• StakingToken[] public stakingTokens;

• mapping(address => TokenIndex) public stakingTokenIndexes;

• mapping (uint256 => mapping (address => UserInfo)) public userInfo;

• uint256 public totalAllocPoint = 0;

• uint256 public startBlock;

• uint256 public launchDate;

Functions
RewardPool has following public functions:

• constructor
Description
Inits the contract and sets default parameters.
Input parameters

o KeyfiToken _rewardToken
o uint256 _rewardPerBlock
o uint256 _startBlock
o uint256 _bonusEndBlock
o uint256 _bonusMultiplier
o uint256 _launchDate

Constraints
None
Events emit
None
Output

 None

• stakingTokensCount, isStakingToken
Description
Simple view functions.

• addStakingToken
Description
Adds a token to the list of allowed staking tokens.
Input parameters

o uint256 _allocPoint
o IERC20 _stakingToken
o uint16 _depositFeeBP

Constraints
o Can only be called by the owner.
o The _depositFeeBPshould should not exceed 400.

Events emit
Emits the TokenAdded event.
Output

 None
 None

• setAllocPoint
Description
Changes the weight allocation for a particular token.
Input parameters

o IERC20 _token
o uint256 _allocPoint
o uint16 _depositFeeBP.

Constraints
o Can only be called by the owner.
o The _stakingToken should be added
o The _depositFeeBPshould should not exceed 400.

Events emit
None
Output

 None

• getMultiplier
Description
Returns multiplier factor for possible bonuses within a period.
Input parameters

o uint256 _from — starting block
o uint256 _to — last block of the period

Constraints
None
Events emit
None
Output

 None

• getMultiplier
Description
Returns multiplier factor for possible bonuses within a period.
Input parameters

o uint256 _from — starting block
o uint256 _to — last block of the period

Constraints
None
Events emit
None
Output

o uint256 – multiplier factor.

• pendingReward
Description
Calculates pending reward for a given staking token and a user.
Input parameters

o IERC20 _token
o address _user

Constraints
o A token should be set.

Events emit
None
Output

o uint256 – pending reward.

• massUpdateTokens
Description
Invokes a checkpoint update on all staking tokens in the list.
Input parameters
None
Constraints
Non
Events emit
None
Output

 None

• checkpoint
Description
Calculates all reward rates for a specified token since last checkpoint.
Visibility
public
Input parameters

o uint256 _pid – a token id.
Constraints

o Token with _pid should exist.
Events emit
None
Output
None

• deposit
Description
Deposit _amount into a given _token pool.

Input parameters
o IERC20 _token — the staking token to be deposited.
o uint256 _amount — The amount of tokens to be staked.

Constraints
o _token should be added.

Events emit
Emits Deposit event.
Output
None

• withdraw
Description
Withdraw _amount of a given staking token.
Visibility
public
Input parameters

o IERC20 _token — the staking token to be withdrawn.
o uint256 _amount — the amount of tokens to be withdrawn.

Constraints
o A _token should be added.
o A message sender should have at least _amount of tokens to be

deposited earlier.
Events emit
Emits Withdraw event.
Output
None

• emergencyWithdraw
Description
Withdraw all specified staked tokens without a reward.
Visibility
public
Input parameters

o IERC20 _token — the staking token to be withdrawn.
Constraints

o A _token should be added.
Events emit
Emits EmergencyWithdraw event.
Output
None

• rewardBlocksLeft
Description

Calculate remaining blocks left according to current reward supply and
rate. Visibility
public view
Input parameters
None
Constraints

 None
Events emit
None
Output

o uint256 – remaining blocks.

• setFeeAddressA, setFeeAddressB
Setters of fee addresses. Available only for owner.

GovernorAlpha.sol

Description

GovernorAlpha allows to vote for specific actions using KeyFi token votes.

Imports

GovernorAlpha has no imports.

Inheritance

GovernorAlpha does not inherit anything.

Usages

GovernorAlpha contract has no usages.

Structs

GovernorAlpha contract has following data structures:

• Proposal

• Receipt

Enums

GovernorAlpha contract has following enums:

• ProposalState
Events

GovernorAlpha contract has following events:

• event ProposalCreated(uint id, address proposer, address[] targets, uint[]
values, string[] signatures, bytes[] calldatas, uint startBlock, uint
endBlock, string description);

• event VoteCast(address voter, uint proposalId, bool support, uint votes);

• event ProposalCanceled(uint id);

• event ProposalQueued(uint id, uint eta);

• event ProposalExecuted(uint id);

Modifiers

GovernorAlpha has no modifiers.

Fields

GovernorAlpha contract has following fields and constants:

• string public constant name = "KeyFi Governance" – name of the contract

• TimelockInterface public timelock – the timelock address.

• TokenInterface public keyfi – the KeyFi token address.

• address public guardian – a guardian address.

• uint public proposalCount – the total number of proposals

• mapping (uint => Proposal) public proposals – all proposals.

• mapping (address => uint) public latestProposalIds – proposals of an
address.

• bytes32 public constant DOMAIN_TYPEHASH =
keccak256("EIP712Domain(string name,uint256 chainId,address
verifyingContract)");

• bytes32 public constant BALLOT_TYPEHASH = keccak256("Ballot(uint256
proposalId,bool support)");

Functions
GovernorAlpha has following public functions:

• constructor
Description
Inits the contract and sets default parameters.
Visibility
public
Input parameters

o address timelock_ - the time contract address.

o address keyfi_ - the KeyFi token address.
o address guardian_ - a guardian address.

Constraints
None
Events emit
None
Output

 None

• propose
Description
Propose a new vote.
Visibility
public
Input parameters

o address[] memory targets – transaction targets.
o uint[] memory values – transaction values.
o string[] memory signatures – functions to be executed.
o bytes[] memory calldatas – calldata of calls.
o string memory description – a propose description.

Constraints
o A proposer votes should be above the proposal threshold.
o targets, values, signatures, calldatas should be of the same length.
o targets length should be more than 0.
o targets length should be less than proposalMaxOperations.
o A proposer can have one live.

Events emit
Emits the ProposalCreated event.
Output

o uint – a propose id.

• queue
Description
Queue a proposal for the execution.
Visibility
public
Input parameters

o uint proposalId – a proposal id.
Constraints

o A proposal can only be queued only if it is succeeded.
o A proposal should not be queued yet.

Events emit

Emits the ProposalQueued event.
Output

 None

• execute
Description
Execute a proposal.
Visibility
public
Input parameters

o uint proposalId – a proposal id.
Constraints

o A proposal should be queued.
o A proposal should not be executed yet.

Events emit
Emits the ProposalExecuted event.
Output

 None

• cancel
Description
Cancel a proposal.
Visibility
public
Input parameters

o uint proposalId – a proposal id.
Constraints

o A proposal should not be executed yet.
o A message sender should be a guardian or a proposer votes become

less than threshold.
Events emit
Emits the ProposalCanceled event.
Output

 None

• getActions
Description
Get actions of a specified proposal.
Visibility
public view
Input parameters

o uint proposalId – a proposal id.
Constraints

None
Events emit
None
Output

o address[] memory targets
o uint[] memory values
o string[] memory signatures
o bytes[] memory calldatas

• getReceipt
Description
Get a vote results of a voter in a provided proposal.
Visibility
public view
Input parameters

o uint proposalId – a proposal id.
o address voter – a voter address.

Constraints
None
Events emit
None
Output

o Receipt memory

• state
Description
Get a state of a given proposal.
Visibility
public view
Input parameters

o uint proposalId – a proposal id.
Constraints
None
Events emit
None
Output

o ProposalState

• state
Description
Get a state of a given proposal.
Visibility
public view

Input parameters
o uint proposalId – a proposal id.

Constraints
None
Events emit
None
Output

o ProposalState

• castVote
Description
Participate in a vote.
Visibility
public
Input parameters

o uint proposalId – a proposal id.
o bool support

Constraints
o A proposal should be active.
o A voter should not participate yet.

Events emit
 Emits the VoteCast event

Output
None

• castVoteBySig
Description
Participate in a vote on behalf of another voter.
Visibility
public
Input parameters

o uint proposalId – a proposal id.
o bool support
o uint8 v – part of a signature.
o bytes32 r – part of a signature.
o bytes32 s – part of a signature.

Constraints
o A proposal should be active.
o A voter should not participate yet.

Events emit
 Emits the VoteCast event

Output

 None

• __acceptAdmin
Description
Accept admin rights of the Timelock contract.
Visibility
public
Input parameters
None
Constraints

o A message sender should be a guardian.
Events emit
None
Output

 None

• __abdicate
Description
Removes a guardian address.
Visibility
public
Input parameters
None
Constraints

o A message sender should be a guardian.
Events emit
None
Output

 None

• __queueSetTimelockPendingAdmin
Description
Queue a new pending admin of the Timelock contract.
Visibility
public
Input parameters

o address newPendingAdmin – an address of the new admin.
o uint eta – execution time.

Constraints
o A message sender should be a guardian.

Events emit
None
Output

 None

• executeSetTimelockPendingAdmin
Description
Set a new pending admin of the Timelock contract.
Visibility
public
Input parameters

o address newPendingAdmin – an address of the new admin.
o uint eta – execution time.

Constraints
o A message sender should be a guardian.
o A transaction should be previously queued.

Events emit
None
Output

 None

Timelock.sol

Description

Timelock queues and executes transactions.

Imports

Timelock has following imports:

• SafeMath.sol – from the OpenZeppelin.

Inheritance

Timelock does not inherit anything.

Usages

Timelock contract has following usages:

• SafeMath for uint.

Structs

Timelock contract has no data structures.

Enums

Timelock contract has no enums.

Events

Timelock contract has following events:

• event NewAdmin(address indexed newAdmin);

• event NewPendingAdmin(address indexed newPendingAdmin);

• event NewDelay(uint indexed newDelay);

• event CancelTransaction(bytes32 indexed txHash, address indexed target,
uint value, string signature, bytes data, uint eta);

• event ExecuteTransaction(bytes32 indexed txHash, address indexed
target, uint value, string signature, bytes data, uint eta);

• event QueueTransaction(bytes32 indexed txHash, address indexed
target, uint value, string signature, bytes data, uint eta);

Modifiers
Timelock has no modifiers.

Fields

Timelock contract has following fields and constants:

• uint public constant GRACE_PERIOD = 14 days;

• uint public constant MINIMUM_DELAY = 2 days;

• uint public constant MAXIMUM_DELAY = 30 days;

• address public admin – an admin address.

• address public pendingAdmin – a pending adming.

• uint public delay – delay between a transaction queueing and execution.

• mapping (bytes32 => bool) public queuedTransactions – queued
transactions.

Functions

Timelock has following public functions:

• constructor
Description
Inits the contract and sets default parameters.
Visibility
public
Input parameters

o address admin_ - a contract admin.

o uint delay_ - delay between a transaction queuing and execution.
Constraints

o A delay_ value should be between DELAY and MAXIMUM_DELAY.
Events emit
None
Output

 None

• receive
Description
Allows to receive ETH.

• setDelay
Description
Sets a delay.
Visibility
public
Input parameters

o uint delay_ - delay between a transaction queuing and execution.
Constraints

o A message sender should be the contract itself.
o A delay_ value should be between DELAY and MAXIMUM_DELAY.

Events emit
Emits the NewDelay event.
Output

 None

• acceptAdmin
Description
Accept the admin permissions.
Visibility
public
Input parameters
None
Constraints

o A message sender should be a pending admin.
Events emit
Emits the NewAdmin event.
Output

 None

• setPendingAdmin
Description
Accept the admin permissions.

Visibility
public
Input parameters

o address pendingAdmin_ - a pending admin address.
Constraints

o A message sender should be the contract itself.
Events emit
Emits the NewPendingAdmin event.
Output

 None

• queueTransaction
Description
Add a new transaction to the queue.
Visibility
public
Input parameters

o address target – a tx target.
o uint value – a tx value.
o string memory signature – a method signature.
o bytes memory data – a tx data.
o uint eta – a minimum delay between a tx queuing and execution.

Constraints
o A message sender should be admin.
o eta should be more than current time plus delay value.

Events emit
Emits the QueueTransaction event.
Output

 bytes32 – a tx hash.

• cancelTransaction
Description
Cancel a transaction.
Visibility
public
Input parameters

o address target – a tx target.
o uint value – a tx value.
o string memory signature – a method signature.
o bytes memory data – a tx data.

o uint eta – a minimum delay between a tx queuing and execution.
Constraints

o A message sender should be admin.
Events emit
Emits the CancelTransaction event.
Output

 None

• cancelTransaction
Description
Execute a transaction.
Visibility
public
Input parameters

o address target – a tx target.
o uint value – a tx value.
o string memory signature – a method signature.
o bytes memory data – a tx data.
o uint eta – a minimum delay between a tx queuing and execution.

Constraints
o A message sender should be admin.
o A transaction should be queued.
o Current timestamp should be between eta and eta +

GRACE_PERIOD.
Events emit
Emits the ExecuteTransaction event.
Output

 None

Airdrop.sol

Description

Simple airdrop contract that allows receive tokens for whitelisted users.

TreasuryVester.sol

Description

Simple vesting contract.

Audit overview

 Critical

No critical issues were found.

 High

No high severity issues were found.

 Medium

1. _cap parameter contains no upper limit validations. Unlimited amount of
tokens can be minted as a result.

Contract: RewardPool

Function: setMintCap

Recommendation: limit the _cap value.

2. _gap parametr contains no lower limits validation. Tokens can be minted
very often.

Contract: RewardPool

Function: setMinimumMintGap

Recommendation: limit the _gap value.

 Low

1. Functions withdraws rewards when called but does not emits the
WithdrawRewards event.

Contract: RewardPool

Functions: withdraw, deposit

Recommendation: emit corresponding event.

2. Functions contains common rewards withdraw logic that can be moved
to a separate function.

Contract: RewardPool

Functions: withdraw, deposit, withdrawRewards

Recommendation: emit corresponding event.

 Informational / Code style / Best Practice

No informational issues were found.

Conclusion

Smart contracts within the scope were manually reviewed and analyzed with
static analysis tools. For the contract, high-level description of functionality was

presented in As-Is overview section of the report.

Audit report contains all found security vulnerabilities and other issues in the

reviewed code.

As a result of the first audit, security engineers found 2 medium and 2 low
severity issues.

Notice:

1. New tokens may be minted by owners unlimitedly.

Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed in accordance with the
best industry practices at the date of this report, in relation to cybersecurity
vulnerabilities and issues in smart contract source code, the details of which are
disclosed in this report (Source Code); the Source Code compilation,

deployment, and functionality (performing the intended functions).

The audit makes no statements or warranties on security of the code. It also
cannot be considered as a sufficient assessment regarding the utility and safety
of the code, bugfree status or any other statements of the contract. While we
have done our best in conducting the analysis and producing this report, it is
important to note that you should not rely on this report only — we recommend
proceeding with several independent audits and a public bug bounty program
to ensure security of smart contracts.

Technical Disclaimer

Smart contracts are deployed and executed on blockchain platform. The
platform, its programming language, and other software related to the smart
contract can have its vulnerabilities that can lead to hacks. Thus, the audit can't
guarantee the explicit security of the audited smart contracts.

